How to setup Proxmox VE 5 with LXC containers on Rackspace Cloud

Testing out changes in a production environment is never a good idea. However prepping test servers can be tedious as you have to find the hardware and setup the operating system before you can begin. So I want a faster and more cost effective medium, turning a single Cloud Server into a virtualized host server for my test servers. Welcome LXC.

Taken from the providers site, LXC is an operating system-level virtualization technology for Linux. It allows a physical server to run multiple isolated operating system instances, called containers, virtual private servers (VPSs), or virtual environments (VEs.) LXC is similar to Solaris Containers, FreeBSD jails and OpenVZ.

To managed my LXC containers, I prefer to use Proxmox VE 5, which provides a clean control panel for managing my containers.

This guide will document how to install Proxmox on a 4G Rackspace Cloud Server running Debian 9. There will be a 50G SSD Cloud Block Storage volume attached to the server utilizing ZFS that will store the containers, which is outlined more below. The Proxmox installation will install everything needed to run LXC. The IP’s for the containers will be provided via NAT served from the server, therefore creating a self contained test environment.

Configure system for LXC according to best practices

Increase the open files limit by appending the following to the bottom of /etc/security/limits.conf:

[root@proxmox01 ~]# vim /etc/security/limits.conf
...
*       soft    nofile  1048576 unset
*       hard    nofile  1048576 unset
root    soft    nofile  1048576 unset
root    hard    nofile  1048576 unset
*       soft    memlock 1048576 unset
*       hard    memlock 1048576 unset

Now setup some basic kernel tweaking at the bottom of /etc/sysctl.conf:

[root@proxmox01 ~]# vim /etc/sysctl.conf
...
# LXD best practices:  https://github.com/lxc/lxd/blob/master/doc/production-setup.md
fs.inotify.max_queued_events = 1048576
fs.inotify.max_user_instances = 1048576
fs.inotify.max_user_watches = 1048576
vm.max_map_count = 262144

Install Proxmox VE 5

For this to work, we need a vanilla Debian 9 Cloud Server and install Proxmox on top of it, which will install the required kernel.

To get things started, update /etc/hosts to setup your fqdn, and remove any resolvable ipv6 domains:

[root@proxmox01 ~]# cat /etc/hosts
127.0.0.1 localhost.localdomain localhost
123.123.123.123 proxmox01.yourdomain.com proxmox01-iad

# The following lines are desirable for IPv6 capable hosts
::1     ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
ff02::3 ip6-allhosts

Test to confirm /etc/files is setup properly. This should return your servers IP address:

[root@proxmox01 ~]# hostname --ip-address

Add the Proxmox VE repo and add the repo key:

[root@proxmox01 ~]# echo "deb http://download.proxmox.com/debian/pve stretch pve-no-subscription" > /etc/apt/sources.list.d/pve-install-repo.list
[root@proxmox01 ~]# wget http://download.proxmox.com/debian/proxmox-ve-release-5.x.gpg -O /etc/apt/trusted.gpg.d/proxmox-ve-release-5.x.gpg

Update the package index and then update the system for Proxmox:

[root@proxmox01 ~]# apt update && apt dist-upgrade
* Select option for 'Install the package maintainer's version' when asked about grub

Install Proxmox VE and reboot:

[root@proxmox01 ~]# apt install proxmox-ve postfix open-iscsi
[root@proxmox01 ~]# reboot

Once the cloud server comes back online, confirm you are running the pve kernel:

[root@proxmox01 ~]# uname -a
Linux proxmox 4.13.4-1-pve #1 SMP PVE 4.13.4-25 (Fri, 13 Oct 2017 08:59:53 +0200) x86_64 GNU/Linux

Setup NAT for the containers

As the Rackspace Cloud server comes with 1 IP address, I will be making use of NAT’ed IP addresses to assign to my individual containers. The steps are documented below:

Update /etc/sysctl.conf to allow ip_forwarding:

[root@proxmox01 ~]# vim /etc/sysctl.conf
...
net.ipv4.ip_forward = 1
...

Then apply the new settings without a reboot:

[root@proxmox01 ~]# sysctl -p

To setup the NAT rules, we need to setup a script that will start on boot. Two things need to be taken into consideration here:

1. Change IP address below (123.123.123.123) in the NAT rule to your Cloud server’s public IP address.
2. This assumes you want to use a 192.168.1.0/24 network for your VE’s.

The quick and dirty script is below:

[root@proxmox01 ~]# vim /etc/init.d/lxc-routing
#!/bin/sh
case "$1" in
 start) echo "lxc-routing started"
# It's important that you change the SNAT IP to the one of your server (not the local but the internet IP)
# The following line adds a route to the IP-range that we will later assign to the VPS. That's how you get internet access on # your VPS.
/sbin/iptables -t nat -A POSTROUTING -s 192.168.1.0/24 -o eth0 -j SNAT --to 123.123.123.123

# Allow servers to have access to internet:
/sbin/iptables -A FORWARD -s 192.168.1.0/24 -j ACCEPT
/sbin/iptables -A FORWARD -d 192.168.1.0/24 -j ACCEPT
# Be sure to add net.ipv4.ip_forward=1 to /etc/sysctl.conf, then run sysctl -p

# These are the rules for any port forwarding you want to do
# In this example, all traffic to and from the ports 11001-11019 gets routed to/from the VPS with the IP 192.168.1.1.
# Also the port 11000 is routed to the SSH port of the vps, later on you can ssh into your VPS through yourip:11000

#/sbin/iptables -t nat -A PREROUTING -i eth0 -p tcp --dport 11000 -j DNAT --to 192.168.1.1:22
#/sbin/iptables -t nat -A PREROUTING -i eth0 -p udp --dport 11001:11019 -j DNAT --to 192.168.1.1
#/sbin/iptables -t nat -A PREROUTING -i eth0 -p tcp --dport 11001:11019 -j DNAT --to 192.168.1.1

# In my case I also dropped outgoing SMTP traffic, as it's one of the most abused things on servers

#/sbin/iptables -A FORWARD -j DROP -p tcp --destination-port 25
#/sbin/iptables -A FORWARD -j DROP -p tcp --destination-port 2525
#/sbin/iptables -A FORWARD -j DROP -p tcp --destination-port 587
#/sbin/iptables -A FORWARD -j DROP -p tcp --destination-port 465
#/sbin/iptables -A FORWARD -j DROP -p tcp --destination-port 2526
#/sbin/iptables -A FORWARD -j DROP -p tcp --destination-port 110
#/sbin/iptables -A FORWARD -j DROP -p tcp --destination-port 143
#/sbin/iptables -A FORWARD -j DROP -p tcp --destination-port 993

;;

*) echo "Usage: /etc/init.d/lxc-routing {start}"
exit 2
;;

esac
exit 0

Setup permissions, set to run on boot, and run it:

[root@proxmox01 ~]# chmod 755 /etc/init.d/lxc-routing
[root@proxmox01 ~]# update-rc.d lxc-routing defaults
[root@proxmox01 ~]# /etc/init.d/lxc-routing start

When you go to start a new container, the container will not start as Proxmox will complain about an error similar to below:

-- Unit [email protected] has begun starting up.
Nov 06 06:07:07 proxmox01.*********** systemd-udevd[11150]: Could not generate persistent MAC address for vethMVIWQY: No such file or directory
Nov 06 06:07:07 proxmox01.*********** kernel: IPv6: ADDRCONF(NETDEV_UP): veth100i0: link is not ready

This can be corrected by:

[root@proxmox01 ~]# vim /etc/systemd/network/99-default.link
[Link]
NamePolicy=kernel database onboard slot path
MACAddressPolicy=none

Then reboot:

[root@proxmox01 ~]# reboot

Navigate your browser to the control panel, login with your root SSH credentials, and setup a Linux Bridge

- Navigate your browser to: https://x.x.x.x:8006
- Click on System --> Network
- On top, click 'Create' --> 'Linux Bridge'
	- Name:  vmbr0
	- IP address:  192.168.1.1
	- Subnet mask: 255.255.255.0
	- Autostart:  checked
	- Leave everything else blank

Setup the 50G SSD Cloud Block Storage Volume with ZFS and add to proxmox. Assuming the device is already mounted, check to see what it got mapped to by:

[root@proxmox01 ~]# lsblk 
NAME    MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
xvda    202:0    0  80G  0 disk 
└─xvda1 202:1    0  80G  0 part /
xvdb    202:16   0  50G  0 disk   <--- This is my new volume

First, install the ZFS utils for Linux, and enable the kernel module:

[root@proxmox01 ~]# apt-get install zfsutils-linux
[root@proxmox01 ~]# /sbin/modprobe zfs

Then add the drive to the zpool:

[root@proxmox01 ~]# zpool create zfs /dev/xvdb 
[root@proxmox01 ~]# zpool list
NAME   SIZE  ALLOC   FREE  EXPANDSZ   FRAG    CAP  DEDUP  HEALTH  ALTROOT
zfs   49.8G  97.5K  49.7G         -     0%     0%  1.00x  ONLINE  -

Now add the new disk to proxmox:

- Navigate your browser to: https://x.x.x.x:8006
- Click on Datacenter --> Storage
- On top, click 'Add' --> 'ZFS'
	- Name:  zfs
	- ZFS Pool:  zfs
	- Enable:  Checked
	- Thin provision:  Checked

Add Docker support to the containers

Docker can successfully run within a LXC container with some additional configuration. However, as the proxmox kernel may be older, the latest versions of Docker may fail to work properly. The versions of Docker you receive from the OS repos seem to work though.

First, create the containers as desired for Docker via Proxmox, then add the following to the bottom of containers LXC config file:

[root@proxmox01 ~]# /etc/pve/lxc/100.conf
...
#insert docker part below
lxc.aa_profile: unconfined
lxc.cgroup.devices.allow: a
lxc.cap.drop:

After restarting that container, you will be able to install and configure Docker as normal on that container.

Add NFS support to the containers

NFS can successfully run within a LXC container with an additional configuration.

First, create an apparmor profile for NFS:

vim /etc/apparmor.d/lxc/lxc-default-with-nfs
# Do not load this file.  Rather, load /etc/apparmor.d/lxc-containers, which
# will source all profiles under /etc/apparmor.d/lxc

profile lxc-container-default-with-nfs flags=(attach_disconnected,mediate_deleted) {
  #include 

# allow NFS (nfs/nfs4) mounts.
  mount fstype=nfs*,
}

Then reload the LXC profiles by:

apparmor_parser -r /etc/apparmor.d/lxc-containers

You can explicitly allow NFS in containers by adding another apparmor profile for them
Finally, add the following to the bottom of containers LXC config file:

[root@proxmox01 ~]# /etc/pve/lxc/100.conf
...
#insert near bottom
lxc.apparmor.profile: lxc-container-default-with-nfs

After restarting that container, you will be able to install and configure NFS as normal on that container.

How to setup OpenVZ on the Rackspace Cloud

Testing out changes in a production environment is never a good idea. However prepping test servers can be tedious as you have to find the hardware and setup the operating system before you can begin. So I want a faster and more cost effective medium, turning a single Cloud Server into a virtualized host server for my test servers. Welcome OpenVZ.

Taken from the providers site, OpenVZ (Open Virtuozzo) is an operating system-level virtualization technology for Linux. It allows a physical server to run multiple isolated operating system instances, called containers, virtual private servers (VPSs), or virtual environments (VEs.) OpenVZ is similar to Solaris Containers and LXC.

To managed my OpenVZ containers, I prefer to use Proxmox, which provides a clean control panel for managing my containers.

This guide will document how to install Proxmox on a 2G Rackspace Cloud Server running Debian 7. The Proxmox installation will install everything needed to run OpenVZ.

Install Proxmox

For this to work, we need a vanilla Debian 7 Cloud Server, and install Proxmox on top of it, which will install the required kernel.

To get things started, update /etc/hosts to setup your fqdn, and remove any resolvable ipv6 domains:

[root@proxmox ~]# cat /etc/hosts
127.0.0.1 localhost.localdomain localhost
192.168.6.177 proxmox.yourdomain.com proxmox pvelocalhost

# The following lines are desirable for IPv6 capable hosts
::1     ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
ff02::3 ip6-allhosts

Now backup the /etc/apt/source.list, and create a fresh one to use proxmox’s repos:

mv /etc/apt/sources.list /etc/apt/sources.list.bak
vim /etc/apt/sources.list
[ ADD ]
deb http://ftp.at.debian.org/debian wheezy main contrib

# PVE repository provided by proxmox.com, only for installation (this repo will stay on 3.1)
deb http://download.proxmox.com/debian wheezy pve

# security updates
deb http://security.debian.org/ wheezy/updates main contrib

Now add the Proxmox VE repository key:

wget -O- "http://download.proxmox.com/debian/key.asc" | apt-key add -

Update the package index and then update the system to install Proxmox:

apt-get update && apt-get dist-upgrade

Install proxmox kernel and headers:

apt-get install pve-firmware pve-kernel-2.6.32-26-pve
apt-get install pve-headers-2.6.32-26-pve

7. Update grub and reboot into proxmox kernel:

vim /etc/default/grub
# From
GRUB_DEFAULT=0
# To
GRUB_DEFAULT=3
...
update-grub2
reboot

Once the cloud server comes back online, confirm you are running the pve kernel

uname -a
Linux proxmox 2.6.32-26-pve #1 SMP Mon Oct 14 08:22:20 CEST 2013 x86_64 GNU/Linux

** If the kernel is a 3.2 kernel, something is wrong and grub booted off default kernel, not pve. Go back and confirm all the steps worked properly.

Remove the old Debian Kernel as it is no longer needed:

apt-get remove linux-image-amd64 linux-image-3.2.0-4-amd64 linux-base
update-grub

Install proxmox ve packages

apt-get install proxmox-ve-2.6.32 ntp ssh lvm2 postfix ksm-control-daemon vzprocps open-iscsi bootlogd

Open up firewall to allow inbound 8006 from your workstations IP address:

ufw allow from x.x.x.x

Setup NAT for VE’s

As the Rackspace Cloud server comes with 1 IP address, I will be making use of NAT’ed IP addresses to assign to my individual containers. The steps are documented below:

Update /etc/sysctl.conf to allow ip_forwarding:

vim /etc/sysctl.conf
[ ADD ]
net.ipv4.ip_forward=1

Then apply the new setting:

sysctl -p

To setup the NAT rules, we need to setup a script that will start on boot. Below is a script that I found on https://vpsaddicted.com/install-and-configure-proxmox-ve-for-nat-ipv4-vps-on-debian-wheezy/.

Two things need to be taken into consideration here:
1. Change IP address below (123.123.123.123) in the NAT rule to your Cloud server’s public IP address.
2. This assumes you want to use a 10.0.0.0/24 network for your VE’s.

vim /etc/init.d/vz-routing
#!/bin/sh
case "$1" in
 start) echo "vz-routing started"
# It's important that you change the SNAT IP to the one of your server (not the local but the internet IP)
# The following line adds a route to the IP-range that we will later assign to the VPS. That's how you get internet access on # your VPS.
/sbin/iptables -t nat -A POSTROUTING -s 10.0.0.0/24 -o eth0 -j SNAT --to 123.123.123.123

# Allow servers to have access to internet:
/sbin/iptables -A FORWARD -s 10.0.0.0/24 -j ACCEPT
/sbin/iptables -A FORWARD -d 10.0.0.0/24 -j ACCEPT
# Be sure to add net.ipv4.ip_forward=1 to /etc/sysctl.conf, then run sysctl -p

# These are the rules for any port forwarding you want to do
# In this example, all traffic to and from the ports 11001-11019 gets routed to/from the VPS with the IP 10.0.0.1.
# Also the port 11000 is routed to the SSH port of the vps, later on you can ssh into your VPS through yourip:11000

#/sbin/iptables -t nat -A PREROUTING -i eth0 -p tcp --dport 11000 -j DNAT --to 10.0.0.1:22
#/sbin/iptables -t nat -A PREROUTING -i eth0 -p udp --dport 11001:11019 -j DNAT --to 10.0.0.1
#/sbin/iptables -t nat -A PREROUTING -i eth0 -p tcp --dport 11001:11019 -j DNAT --to 10.0.0.1

# In my case I also dropped outgoing SMTP traffic, as it's one of the most abused things on servers

#/sbin/iptables -A FORWARD -j DROP -p tcp --destination-port 25
#/sbin/iptables -A FORWARD -j DROP -p tcp --destination-port 2525
#/sbin/iptables -A FORWARD -j DROP -p tcp --destination-port 587
#/sbin/iptables -A FORWARD -j DROP -p tcp --destination-port 465
#/sbin/iptables -A FORWARD -j DROP -p tcp --destination-port 2526
#/sbin/iptables -A FORWARD -j DROP -p tcp --destination-port 110
#/sbin/iptables -A FORWARD -j DROP -p tcp --destination-port 143
#/sbin/iptables -A FORWARD -j DROP -p tcp --destination-port 993

;;

*) echo "Usage: /etc/init.d/vz-routing {start}"
exit 2
;;

esac
exit 0

Setup permissions, set to run on boot, and run it:

chmod 755 /etc/init.d/vz-routing
update-rc.d vz-routing defaults
/etc/init.d/vz-routing start

That should be it! Navigate your browser to the control panel, login with your root SSH credentials, and your ready to go:

https://x.x.x.x:8006